banner



What Is Chemical Makeup Of Nutrio2?

Employ of oxygen as a medical treatment

Oxygen therapy
Simple face mask.jpg

A person wearing a simple face mask

Clinical data
Other names supplemental oxygen, enriched air
AHFS/Drugs.com FDA Professional person Drug Data
Routes of
administration
inhaled
Drug course medical gas
ATC code
  • V03AN01 (WHO)
Identifiers
CAS Number
  • 7782-44-7
ChemSpider
  • none
UNII
  • S88TT14065
Chemical and physical data
Formula Oii

Oxygen therapy, also known as supplemental oxygen, is the use of oxygen as medical treatment.[one] Acute indications for therapy include hypoxemia (low blood oxygen levels), carbon monoxide toxicity and cluster headache. It may also be prophylactically given to maintain claret oxygen levels during the induction of anesthesia.[2] Oxygen therapy is often useful in chronic hypoxemia caused by conditions such as severe COPD or cystic fibrosis.[three] [1] Oxygen can exist delivered via nasal cannula or face mask, or via high pressure level conditions such as in endotracheal intubation or hyperbaric chamber.[4] [5] It tin can also be given through bypassing the airway, such as in ECMO therapy.

Oxygen is required for normal cellular metabolism.[6] However, excessively high concentrations can issue in oxygen toxicity, leading to lung damage and respiratory failure.[2] [7] College oxygen concentrations can also increment the hazard of airway fires, peculiarly while smoking.[one] Oxygen therapy can also dry out the nasal mucosa without humidification.[one] In nearly conditions an oxygen saturation of 94–96% is adequate, while in those at run a risk of carbon dioxide retention saturations of 88–92% are preferred.[i] [8] In cases of carbon monoxide toxicity or cardiac arrest, saturations should be as high every bit possible.[1] [8] While air is typically 21% oxygen by volume, oxygen therapy tin can increase O2 content of air upwardly to 100%.[seven]

The medical employ of oxygen first became common around 1917, and is the most mutual hospital treatment in the developed world.[ane] [9] [10] [xi] It is currently on the Globe Health Organization'south List of Essential Medicines.[11] Domicile oxygen can exist provided either by oxygen tanks or oxygen concentrator.[i]

Medical uses [edit]

Oxygen pipe and regulator with menstruation meter, for oxygen therapy, mounted in an ambulance

Oxygen is widely used by hospitals, Ems, and showtime-help providers in a diversity of conditions and settings. A few indications frequently requiring loftier-flow oxygen include resuscitation, major trauma, anaphylaxis, major bleeding, shock, active convulsions, and hypothermia.[12] [13]

Acute conditions [edit]

In context of acute hypoxemia, oxygen therapy should be titrated to a target level based on pulse oximetry (94–96% in most patients, or 88–92% in people with COPD).[12] [8] This can be performed by increasing oxygen delivery, described equally FIOii (fraction of inspired oxygen). In 2018, the British Medical Journal recommended that oxygen therapy be stopped for saturations greater than 96% and not started for saturations to a higher place 90 to 93%.[xiv] This may be due to an association between excessive oxygenation in the acutely ill and increased mortality.[8] Exceptions to these recommendations include carbon monoxide poisoning, cluster headaches, sickle jail cell crisis, and pneumothorax.[14]

Oxygen therapy has also been used every bit emergency handling for decompression sickness for years.[15] Recompression in a hyperbaric bedchamber with 100% oxygen is the standard handling for decompression illness.[15] [16] [17] The success of recompression therapy is greatest if given inside four hours afterward resurfacing, with before treatment associated with a decreased number of recompression treatments required for resolution.[18] Information technology has been suggested in literature that heliox may be a improve alternative to oxygen therapy.[19]

In the context of stroke, oxygen therapy may exist beneficial as long as hyperoxic environments are avoided.[20]

People receiving outpatient oxygen therapy for hypoxemia post-obit acute illness or hospitalization should be re-assessed by a physician prior to prescription renewal to gauge the necessity of ongoing oxygen therapy.[21] If the initial hypoxemia has resolved, additional treatment may exist an unnecessary use of resource.[21]

Chronic conditions [edit]

Common conditions which may require a baseline of supplementary oxygen include chronic obstructive pulmonary illness (COPD), chronic bronchitis, and emphysema. Patients may likewise require additional oxygen during astute exacerbations. Oxygen may also be prescribed for breathlessness, terminate-stage cardiac failure, respiratory failure, avant-garde cancer, or neurodegenerative affliction in spite of relatively normal blood oxygen levels. Physiologically, it may be indicated in people with arterial oxygen fractional pressure PaO
ii
≤ 55mmHg (7.3kPa) or arterial oxygen saturation SaO
2
≤ 88%.[22] [23] [24]

Careful titration of oxygen therapy should be considered in patients with chronic weather condition predisposing them to carbon dioxide retention (eastward.g., COPD, emphysema). In these instances, oxygen therapy may decrease respiratory bulldoze, leading to accumulation of carbon dioxide (hypercapnia), acidemia, and increased bloodshed secondary to respiratory failure.[25] Improved outcomes have been observed with titrated oxygen treatment largely due to gradual improvement of the ventilation/perfusion ratio.[26] The risks associated with loss of respiratory drive are far outweighed by the risks of withholding emergency oxygen, so emergency administration of oxygen is never contraindicated. Transfer from the field to definitive care with titrated oxygen typically occurs long before significant reductions to the respiratory drive are observed.

Contraindications [edit]

In that location are certain situations in which oxygen therapy has been shown to negatively impact a person's condition.[27]

  • Oxygen therapy can exacerbate the effects of paraquat poisoning and should be withheld unless severe respiratory distress or respiratory arrest is present. Paraquat poisoning is rare, with about 200 deaths globally from 1958 to 1978.[28]
  • Oxygen therapy is not recommended for people with pulmonary fibrosis or bleomycin-associated lung impairment.[29]
  • ARDS caused by acid aspiration may be exacerbated with oxygen therapy according to some brute studies.[30] [31]
  • Hyperoxic environments should be avoided in cases of sepsis.[twenty]

    Pin-indexed Oxygen Regulator for portable D-Cylinder, usually carried in an ambulance'due south resuscitation kit

Adverse effects [edit]

In some instances, oxygen delivery can lead to particular complications in population subsets.

  • In infants with respiratory failure, administration of high levels of oxygen tin can sometimes promote overgrowth of new claret vessels in the eye leading to blindness. This miracle is known every bit retinopathy of prematurity (ROP).
  • In rare instances, people receiving hyperbaric oxygen therapy have had seizures, which has been previously attributed to oxygen toxicity.[32] [33]

Alternative medicine [edit]

Some practitioners of alternative medicine have promoted "oxygen therapy" as a cure for many human ailments including AIDS, Alzheimer's disease and cancer. According to the American Cancer Society, "available scientific evidence does not support claims that putting oxygen-releasing chemicals into a person's body is constructive in treating cancer", and some of these treatments can be dangerous.[34]

Physiologic Furnishings [edit]

Oxygen supplementation has a variety of physiologic furnishings on the human torso. Whether or non these effects are adverse to a patient is dependent upon clinical context. Cases in which an backlog amount of oxygen is available to organs is known as hyperoxia.[35] While the following effects may observed with noninvasive high-dose oxygen therapy (i.east., non ECMO), delivery of oxygen at higher pressures is associated with exacerbation of the following associated furnishings.

Absorption atelectasis [edit]

Information technology has been theorized that oxygen therapy may promote accelerated evolution of atelectasis (fractional or complete lung collapse), besides every bit denitrogenation of gas cavities (e.k., pneumothorax, pneumocephalus).[36] [37] This concept is based on the thought that oxygen is more quickly absorbed compared to nitrogen within the body, leading oxygen-rich areas that are poorly ventilated to be rapidly absorbed, leading to atelectasis.[36] It is thought that higher fractions of inhaled oxygen is associated with increasing rates of atelectasis in the clinical scenario.[38] In clinically healthy adults, it is believed that absorption atelectasis typically does not take whatever significant implications when managed properly.[39]

Airway inflammation [edit]

In regard to the airway, both tracheobronchitis and mucositis have been observed with loftier levels of oxygen commitment (typically >40% O2).[forty] Within the lungs, these elevated concentrations of oxygen take been associated with increased alveolar toxicity (coined the Lorrain-Smith upshot).[35] Mucosal damage is observed to increment with elevated atmospheric force per unit area and oxygen concentrations, which may result in the development of ARDS and possibly expiry.[41] [42]

Central nervous system effects [edit]

Decreased cerebral blood menstruation and ICP have been reported in hyperoxic weather, with mixed results regarding impact on cognition.[43] [44] [45] [46] Hyperoxia as besides been associated with seizures, cataract germination, and reversible myopia.[47]

Hypercapnea [edit]

Among CO2 retainers, excess exposure to oxygen in context of the Haldane consequence causes decreased binding of deoxyhemoglobin to COii in the blood.[48] This unloading of CO2 may contribute to the development of acid-base disorders due to the associated increase in PaCO2 (hypercapnea). Patients with underlying lung disease such as COPD may not exist able to fairly clear the additional CO2 produced by this outcome, worsening their status.[49] In addition, oxygen therapy has also been shown to decrease respiratory drive, further contributing to possible hypercapnea.[37]

Immunological furnishings [edit]

Hyperoxic environments have been observed to decrease granulocyte rolling and diapedesis in specific circumstances in humans.[l] In regard to anaerobic infections, cases of necrotizing fasciitis have been observed to require fewer debridement operations and have improvement in regard to mortality in patients treated with hyperbaric oxygen therapy.[51] This may stalk from oxygen intolerance of otherwise anaerobic microorganisms.

Oxidative Stress [edit]

Sustained exposure to oxygen may overwhelm the torso'southward chapters to deal with oxidative stress.[52] Rates of oxidative stress appears to exist influenced by both oxygen concentration and length of exposure, with general toxicity observed to occur within hours in certain hyperoxic conditions.[53]

Reduction in erythropoiesis [edit]

Hyperoxia is observed to result in a serum reduction in erythropoietin, resulting in reduced stimulus for erythropoiesis.[54] Hyperoxia at normobaric environments does not announced to be able to halt erythropoiesis completely.[54]

Pulmonary vasodilation [edit]

Inside the lungs, hypoxia is observed to be a potent pulmonary vasoconstrictor, due to inhibition of an outward potassium current and activation of inward sodium current leading to pulmonary vascular muscular contraction.[55] Even so, the effects of hyperoxia practice not seem to accept a particularly strong vasodilatory effect from the few studies that have been performed on patients with pulmonary hypertension.[56] [57] As a outcome, an effect appears to exist present simply small.[56] [57]

Systemic vasoconstriction [edit]

In the systemic vasculature, oxygen serves as a vasoconstrictor, leading to mildly increased blood pressure and decreased cardiac output and heart rate. Hyperbaric conditions exercise non seem to have a significant impact on these overall physiologic effects.[58] [46] Clinically, this may lead to increased left-to-right shunting in certain patient populations, such as those with atrial septal defect. While the machinery of the vasoconstriction is unknown, one proposed theory is that increased reactive oxygen species from oxygen therapy accelerates the degradation of endothelial nitric oxide, a vasodilator.[59] [46] These vasoconstrictive effects are thought to be the underlying mechanism helping to abort cluster headaches.[threescore]

Dissolved O2 in hyperoxic weather condition may make also a meaning contribution to total gas transport.[61]

Gas cylinders containing oxygen to be used at home. When in utilise, a pipe is attached to the cylinder'due south regulator which attaches to a mask that fits over a person'due south nose and mouth.

Storage and sources [edit]

A domicile oxygen concentrator for a person with emphysema

Oxygen can be separated by a number of methods (e.yard., chemical reaction, fractional distillation) to enable firsthand or time to come utilize. The main methods utilized for oxygen therapy include:

  1. Liquid storage – Liquid oxygen is stored in chilled tanks and immune to boil (at a temperature of 90.188 K (−182.96 °C)) during use, releasing gaseous oxygen. This method is widely utilized at hospitals due to high oxygen requirements. See Vacuum Insulated Evaporator for more information on this method of storage.
  2. Compressed gas storage – Oxygen gas is compressed in a gas cylinder, which provides a convenient storage method (refrigeration not required). Large oxygen cylinders hold a book of six,500 litres (230 cu ft) and tin can last about 2 days at a menstruation rate of 2 litres per infinitesimal (LPM). A modest portable M6 (B) cylinder holds 164 or 170 litres (5.8 or 6.0 cu ft) and weighs about 1.3 to 1.6 kilograms (2.9 to 3.5 lb).[62] These tanks can last 4–6 hours with a conserving regulator, which adjust period based on a person'south breathing rate. Conserving regulators may not exist effective for patients who breathe through their oral cavity.
  3. Instant usage – The apply of an electrically powered oxygen concentrator[63] or a chemic reaction based unit of measurement[64] can create sufficient oxygen for firsthand personal use. These units (especially the electrically powered versions) are widely used for domicile oxygen therapy as portable personal oxygen. One particular advantage includes continuous supply without need for bulky oxygen cylinders.

Highly full-bodied sources of oxygen also increment risk for rapid combustion. Oxygen itself is not flammable, but the addition of concentrated oxygen to a burn down greatly increases its intensity, and tin can help the combustion of materials that are relatively inert under normal weather. Burn and explosion hazards exist when concentrated oxidants and fuels are brought together in close proximity, although an ignition event (e.g., heat or spark) is needed to trigger combustion.[65]

Concentrated O
ii
will allow combustion to proceed speedily and energetically.[65] Steel pipes and storage vessels used to store and transmit both gaseous and liquid oxygen will act as a fuel; and therefore the design and manufacture of O
2
systems requires special grooming to ensure that ignition sources are minimized.[65] Highly concentrated oxygen in a high-pressure environment tin can spontaneously ignite hydrocarbons such as oil and grease, resulting in a fire or explosion. The estrus acquired by rapid pressurization serves as the ignition source. For this reason, storage vessels, regulators, piping and any other equipment used with highly full-bodied oxygen must be "oxygen-clean" prior to use to ensure the absence of potential fuels. This does non only use to pure oxygen; whatever concentration significantly higher than atmospheric (approximately 21%) carries a potential ignition chance.

Some hospitals have instituted "no-smoking" policies which tin help keep ignition sources away from medically piped oxygen. These policies exercise not eliminate the take chances of injury among patients with portable oxygen systems, especially amid smokers.[66] Other potential sources of ignition include candles, aromatherapy, medical equipment, cooking, and deliberate vandalism.

Commitment [edit]

Various devices are used for oxygen administration. In most cases, the oxygen will first pass through a pressure regulator, used to control the high pressure of oxygen delivered from a cylinder (or other source) to a lower pressure. This lower pressure is and so controlled by a flowmeter (which may exist preset or selectable) which controls the flow at a measured rate (due east.chiliad., litres per infinitesimal [LPM]). The typical flowmeter range for medical oxygen is between 0 and 15 LPM with some units capable of obtaining up to 25 LPM. Many wall flowmeters using a Thorpe tube design are able to exist dialed to "flush" oxygen which is benign in emergency situations.

Low-dose oxygen [edit]

Many people only crave slight increases in inhaled oxygen, rather than pure or near-pure oxygen.[67] These requirements tin can exist met through a number of devices dependent on situation, flow requirements, and personal preference.

A nasal cannula (NC) is a thin tube with 2 small nozzles inserted into a person'southward nostrils. Information technology tin provide oxygen at low flow rates, ane–6 litres per minute (LPM), delivering an oxygen concentration of 24–xl%.[68]

In that location are also a number of face mask options, such as the simple face mask, oftentimes used at between 5 and x LPM, capable of delivering oxygen concentrations between 35% and 55%.[68] This is closely related to the more controlled air-entrainment masks, as well known as Venturi masks, which can accurately deliver a predetermined oxygen concentration from 24 to 50%.[68]

In some instances, a partial rebreathing mask can be used, which is based on a unproblematic mask, but features a reservoir bag, which can provide oxygen concentrations of 40–lxx% at 5–15 LPM.

Demand oxygen commitment systems (DODS) or oxygen resuscitators deliver oxygen but when the person inhales or the caregiver presses a button on the mask (e.1000., nonbreathing patient).[69] These systems greatly conserve oxygen compared to steady-flow masks, and are useful in emergency situations when a limited supply of oxygen is bachelor and there is a delay in transporting the person to college care.[69] Due to utilization of a diversity of methods for oxygenation requirements performance differences arise.[lxx] They are very useful in CPR, every bit the caregiver tin evangelize rescue breaths equanimous of 100% oxygen with the press of a push button. Care must be taken not to over-inflate the person's lungs, for which some systems employ safe valves. These systems may not be appropriate for people who are unconscious or in respiratory distress because of the required respiratory try.

Loftier flow oxygen delivery [edit]

For patients requiring high concentrations of oxygen, a number of devices are bachelor. The almost usually utilized device is the not-rebreather mask (or reservoir mask). Non-rebreather masks describe oxygen from fastened reservoir bags with 1-way valves that direct exhaled air out of the mask. If flow rate is not sufficient (~10L/min), the bag may collapse on inspiration.[68] This blazon of mask is indicated for acute medical emergencies. The delivered FIOtwo (Inhalation volumetric fraction of molecular oxygen) of this arrangement is 60–80%, depending on oxygen menses and breathing pattern.[71] [72]

Some other blazon of device is a humidified high period nasal cannula which enables flows exceeding a person'southward height inspiratory flow demand to be delivered via nasal cannula, thus providing FIO2 of upward to 100% because at that place is no entrainment of room air.[73] This besides allows the person to continue to talk, eat, and potable while still receiving therapy.[74] This type of delivery method is associated with greater overall comfort, improved oxygenation, and respiratory rates compared with face mask oxygen.[75]

In specialist applications such as aviation, tight-fitting masks tin can be used. These masks also have applications in anaesthesia, carbon monoxide poisoning treatment and in hyperbaric oxygen therapy.

Positive pressure level delivery [edit]

Patients who are unable to exhale on their own will require positive pressure to move oxygen into their lungs for gaseous exchange to take place. Systems for commitment vary in complexity and cost, starting with a basic pocket mask adjunct which tin be used to manually evangelize artificial respiration with supplemental oxygen delivered through a mask port.

Many emergency medical service members, first help personnel, and hospital staff may use a handbag-valve-mask (BVM), which is a malleable handbag fastened to a face mask (or invasive airway such as an endotracheal tube or laryngeal mask airway), usually with a reservoir bag attached, which is manually manipulated by the healthcare professional person to push oxygen (or air) into the lungs. This is the only procedure allowed for initial handling of cyanide poisoning in the Britain workplace.[76]

Pin-indexed Oxygen Regulator for portable D-Cylinder, usually carried in an ambulance's resuscitation kit

Automated versions of the BVM organisation, known as a resuscitator or pneupac can also evangelize measured and timed doses of oxygen directly to people through a facemask or airway. These systems are related to the anaesthetic machines used in operations under general anaesthesia that let a variable amount of oxygen to be delivered, forth with other gases including air, nitrous oxide and inhalational anaesthetics.

Drug Commitment [edit]

Oxygen and other compressed gases are used in conjunction with a nebulizer to allow delivery of medications to the upper and/or lower airways. Nebulizers use compressed gas to propel liquid medication into therapeutically sized droplets droplets for deposition to the appropriate portion of the airway. A typical compressed gas flow rate of 8–10 Fifty/min is used to nebulize medications, saline, sterile water, or a combination these treatments into a therapeutic aerosol for inhalation. In the clinical setting, room air (ambient mix of several gasses), molecular oxygen, and Heliox[ commendation needed ] are the most common gases used to nebulize a bolus treatment or a continuous volume of therapeutic aerosols.

Exhalation filters for oxygen masks [edit]

Filtered oxygen masks have the power to preclude exhaled particles from beingness released into the surrounding environs. These masks are commonly of a airtight design such that leaks are minimized and breathing of room air is controlled through a series of one-way valves. Filtration of exhaled breaths is accomplished either by placing a filter on the exhalation port or through an integral filter that is part of the mask itself. These masks first became popular in the Toronto (Canada) healthcare community during the 2003 SARS Crisis. SARS was identified every bit being respiratory based, and it was adamant that conventional oxygen therapy devices were non designed for the containment of exhaled particles.[77] [78] [79] In 2003, the HiOxfourscore oxygen mask was released for sale. The HiOx80 mask is a closed pattern mask that allows a filter to be placed on the exhalation port. Several new designs have emerged in the global healthcare community for the containment and filtration of potentially infectious particles. Other designs include the ISO-O
2
oxygen mask, the Flo2Max oxygen mask, and the O-Mask.

Typical oxygen masks permit a person to breathe in a mixture of room air and therapeutic oxygen. Notwithstanding, as filtered oxygen masks apply a closed design that minimizes or eliminates the person'south contact with and ability to inhale room air, delivered oxygen concentrations in such devices take been found to exist elevated, budgeted 99% using adequate oxygen flows.[ commendation needed ] Because all exhaled particles are contained inside the mask, nebulized medications are also prevented from releasing into the surrounding atmosphere, decreasing the occupational exposure to healthcare staff and other people.[ citation needed ]

Aircraft [edit]

In the United states, about airlines restrict the devices allowed on board an aircraft. Equally a result, passengers are restricted in what devices they can use. Some airlines volition provide cylinders for passengers with an associated fee. Other airlines permit passengers to behave on approved portable concentrators. All the same, the lists of approved devices varies past airline so passengers may demand to check with any airline they are planning to fly on. Passengers are more often than not not allowed to bear on personal cylinders. In all cases, passengers demand to notify the airline in advance of their equipment.

Effective May thirteen, 2009, the Department of Transportation and FAA ruled that a select number of portable oxygen concentrators are approved for use on all commercial flights.[80] FAA regulations require larger airplanes to carry D-cylinders of oxygen for employ in instance of an emergency.

Run into also [edit]

  • Breathing gas – Gas used for human respiration
  • Nebulizer – Drug delivery device
  • Mechanical ventilation – Method to mechanically help or replace spontaneous breathing
  • Hyperbaric oxygen therapy
  • Oxygen bar – Institution that sells oxygen for on-site recreational utilise
  • Emergency medical services – Services providing acute medical care
  • Respiratory therapist – Specialized healthcare practitioner trained in critical intendance and cardio-pulmonary medicine
  • Oxygen tent – A canopy placed over a patient to provide oxygen at a higher level than normal
  • Oxygen firebreak
  • Bottled oxygen (climbing) – Oxygen stored in portable high force per unit area cylinders
  • Redento D. Ferranti - Early use of oxygen therapy in the U.S as an effective arroyo to rehabilitation for COPD patients.

References [edit]

  1. ^ a b c d e f yard h British national formulary : BNF 69 (69 ed.). British Medical Association. 2015. pp. 217–218, 302. ISBN9780857111562.
  2. ^ a b World Wellness Arrangement (2009). Stuart MC, Kouimtzi M, Hill SR (eds.). WHO Model Formulary 2008. Earth Wellness Organization. p. 20. hdl:10665/44053. ISBN9789241547659.
  3. ^ Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, Jha P, Mills A, Musgrove P, eds. (2006). Disease Control Priorities in Developing Countries. World Depository financial institution Publications. p. 689. ISBN9780821361801. Archived from the original on 2017-05-ten.
  4. ^ Macintosh M, Moore T (1999). Caring for the Seriously Ill Patient 2E (2 ed.). CRC Press. p. 57. ISBN9780340705827. Archived from the original on 2017-01-xviii.
  5. ^ Dart RC (2004). Medical Toxicology. Lippincott Williams & Wilkins. pp. 217–219. ISBN9780781728454. Archived from the original on 2017-01-18.
  6. ^ Peate I, Wild One thousand, Nair M (2014). Nursing Practice: Knowledge and Care. John Wiley & Sons. p. 572. ISBN9781118481363. Archived from the original on 2017-01-18.
  7. ^ a b Martin L (1997). Scuba Diving Explained: Questions and Answers on Physiology and Medical Aspects of Scuba Diving. Lawrence Martin. p. H-1. ISBN9780941332569. Archived from the original on 2017-01-18.
  8. ^ a b c d Chu DK, Kim LH, Young PJ, Zamiri Northward, Almenawer SA, Jaeschke R, et al. (April 2018). "Bloodshed and morbidity in acutely ill adults treated with liberal versus bourgeois oxygen therapy (IOTA): a systematic review and meta-analysis". Lancet. 391 (10131): 1693–1705. doi:10.1016/S0140-6736(18)30479-iii. PMID 29726345. S2CID 19162595.
  9. ^ Agasti TK (2010). Textbook of Anesthesia for Postgraduates. JP Medical Ltd. p. 398. ISBN9789380704944. Archived from the original on 2017-05-x.
  10. ^ Rushman GB, Davies NJ, Atkinson RS (1996). A Short History of Amazement: The First 150 Years. Butterworth-Heinemann. p. 39. ISBN9780750630665. Archived from the original on 2017-05-ten.
  11. ^ a b Wyatt JP, Illingworth RN, Graham CA, Hogg K, Robertson C, Clancy M (2012). Oxford Handbook of Emergency Medicine. OUP Oxford. p. 95. ISBN9780191016059. Archived from the original on 2017-01-18.
  12. ^ a b "Clinical Guidelines Update – Oxygen" (PDF). Joint Royal Colleges Ambulance Liaison Committee/Warwick University. April 2009. Archived (PDF) from the original on 2009-07-11. Retrieved 2009-06-29 .
  13. ^ O'Driscoll BR, Howard LS, Davison AG (October 2008). "BTS guideline for emergency oxygen utilize in adult patients". Thorax. British Thoracic Society. 63 (Suppl 6:vi): vi1-68. doi:10.1136/thx.2008.102947. PMID 18838559.
  14. ^ a b Siemieniuk RA, Chu DK, Kim LH, Güell-Rous MR, Alhazzani Westward, Soccal PM, et al. (October 2018). "Oxygen therapy for acutely ill medical patients: a clinical practice guideline". BMJ. 363: k4169. doi:10.1136/bmj.k4169. PMID 30355567. S2CID 53032977.
  15. ^ a b Brubakk AO, Neuman TS (2003). Bennett and Elliott's physiology and medicine of diving (fifth Rev ed.). United states: Saunders Ltd. p. 800. ISBN0-7020-2571-ii.
  16. ^ Undersea and Hyperbaric Medical Society. "Decompression Sickness or Illness and Arterial Gas Embolism". Archived from the original on 2008-07-05. Retrieved 2008-05-30 .
  17. ^ Acott C (1999). "A cursory history of diving and decompression illness". South Pacific Underwater Medicine Society Periodical. 29 (2). ISSN 0813-1988. OCLC 16986801. Archived from the original on 2009-02-01. Retrieved 2008-05-thirty .
  18. ^ Longphre JM, Denoble PJ, Moon RE, Vann RD, Freiberger JJ (2007). "Kickoff aid normobaric oxygen for the treatment of recreational diving injuries". Undersea & Hyperbaric Medicine. 34 (1): 43–9. OCLC 26915585. PMID 17393938. Archived from the original on 2008-06-thirteen. Retrieved 2008-05-30 .
  19. ^ Kol S, Adir Y, Gordon CR, Melamed Y (June 1993). "Oxy-helium treatment of severe spinal decompression sickness subsequently air diving". Undersea & Hyperbaric Medicine. 20 (2): 147–54. PMID 8329941. Archived from the original on 2009-02-01. Retrieved 2008-05-30 .
  20. ^ a b Vincent JL, Taccone FS, He X (2017). "Harmful Effects of Hyperoxia in Postcardiac Arrest, Sepsis, Traumatic Brain Injury, or Stroke: The Importance of Individualized Oxygen Therapy in Critically Sick Patients". Canadian Respiratory Journal. 2017: 2834956. doi:10.1155/2017/2834956. PMC5299175. PMID 28246487.
  21. ^ a b American Higher of Breast Physicians; American Thoracic Society (September 2013), "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation, American Higher of Chest Physicians and American Thoracic Social club, archived from the original on 2013-xi-03, retrieved 2013-01-06 , which cites
    • Croxton TL, Bailey WC (August 2006). "Long-term oxygen treatment in chronic obstructive pulmonary affliction: recommendations for future inquiry: an NHLBI workshop report". American Journal of Respiratory and Critical Care Medicine. 174 (4): 373–8. doi:10.1164/rccm.200507-1161WS. PMC2648117. PMID 16614349.
    • O'Driscoll BR, Howard LS, Davison AG (October 2008). "BTS guideline for emergency oxygen apply in adult patients". Thorax. 63 (Suppl six): vi1-68. doi:10.1136/thx.2008.102947. PMID 18838559.
    • Macnee W (September 2005). "Prescription of oxygen: still problems after all these years". American Journal of Respiratory and Critical Intendance Medicine. 172 (v): 517–8. doi:10.1164/rccm.2506007. PMID 16120712.
  22. ^ McDonald CF, Crockett AJ, Young IH (June 2005). "Developed domiciliary oxygen therapy. Position statement of the Thoracic Society of Australia and New Zealand". The Medical Journal of Australia. 182 (12): 621–6. doi:10.5694/j.1326-5377.2005.tb06848.10. hdl:2440/17207. PMID 15963018. S2CID 1056683.
  23. ^ Stoller JK, Panos RJ, Krachman Southward, Doherty DE, Make B (July 2010). "Oxygen therapy for patients with COPD: current evidence and the long-term oxygen treatment trial". Chest. 138 (1): 179–87. doi:ten.1378/chest.09-2555. PMC2897694. PMID 20605816.
  24. ^ Cranston JM, Crockett AJ, Moss JR, Alpers JH (October 2005). "Domiciliary oxygen for chronic obstructive pulmonary disease". The Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd. 2008 (iv): CD001744. doi:10.1002/14651858.cd001744.pub2. PMC6464709. PMID 16235285.
  25. ^ Austin MA, Wills KE, Blizzard L, Walters EH, Wood-Baker R (October 2010). "Effect of high flow oxygen on bloodshed in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial". BMJ. 341 (oct18 2): c5462. doi:ten.1136/bmj.c5462. PMC2957540. PMID 20959284.
  26. ^ Kim V, Benditt JO, Wise RA, Sharafkhaneh A (May 2008). "Oxygen therapy in chronic obstructive pulmonary disease". Proceedings of the American Thoracic Society. 5 (4): 513–viii. doi:10.1513/pats.200708-124ET. PMC2645328. PMID 18453364.
  27. ^ Patarinski D (1976). "[Indications and contraindications for oxygen therapy of respiratory insufficiency]". Vutreshni Bolesti (in Bulgarian and English). 15 (4): 44–l. PMID 1007238.
  28. ^ Agarwal, R; Srinivas, R; Aggarwal, AN; Gupta, D (Dec 2006). "Experience with paraquat poisoning in a respiratory intensive care unit in N India" (PDF). Singapore Medical Periodical. 47 (12): 1033–1037. PMID 17139398.
  29. ^ "EMT Medication Formulary" (PDF). PHECC Clinical Do Guidelines. Pre-Hospital Emergency Care Council. 15 July 2009. p. 84. Archived from the original (PDF) on 14 May 2011. Retrieved 2010-04-14 .
  30. ^ Knight PR, Kurek C, Davidson BA, Nader ND, Patel A, Sokolowski J, et al. (June 2000). "Acid aspiration increases sensitivity to increased ambient oxygen concentrations". American Periodical of Physiology. Lung Cellular and Molecular Physiology. 278 (vi): L1240-7. doi:ten.1152/ajplung.2000.278.6.L1240. PMID 10835330.
  31. ^ Nader-Djalal Due north, Knight PR, Thusu Thou, Davidson BA, Holm BA, Johnson KJ, Dandona P (July 1998). "Reactive oxygen species contribute to oxygen-related lung injury afterward acid aspiration". Anesthesia and Analgesia. 87 (1): 127–33. doi:x.1097/00000539-199807000-00028. PMID 9661561. S2CID 19132661.
  32. ^ Smerz RW (2004). "Incidence of oxygen toxicity during the treatment of dysbarism". Undersea & Hyperbaric Medicine. 31 (two): 199–202. PMID 15485081.
  33. ^ Hampson NB, Simonson SG, Kramer CC, Piantadosi CA (December 1996). "Primal nervous system oxygen toxicity during hyperbaric treatment of patients with carbon monoxide poisoning". Undersea & Hyperbaric Medicine. 23 (4): 215–ix. PMID 8989851.
  34. ^ "Oxygen Therapy". American Cancer Guild. 26 December 2012. Archived from the original on 21 March 2012. Retrieved 2013-09-20 .
  35. ^ a b Mach WJ, Thimmesch AR, Pierce JT, Pierce JD (2011-06-05). "Consequences of hyperoxia and the toxicity of oxygen in the lung". Nursing Research and Practice. 2011: 260482. doi:10.1155/2011/260482. PMC3169834. PMID 21994818.
  36. ^ a b Hedenstierna Thousand, Edmark L (June 2010). "Mechanisms of atelectasis in the perioperative flow". All-time Do & Enquiry. Clinical Anaesthesiology. 24 (2): 157–69. doi:10.1016/j.bpa.2009.12.002. PMID 20608554.
  37. ^ a b Domino KB (Oct 2019). "Pre-emergence Oxygenation and Postoperative Atelectasis". Anesthesiology. 131 (four): 771–773. doi:x.1097/ALN.0000000000002875. PMID 31283741. S2CID 195842599.
  38. ^ Dale WA, Rahn H (September 1952). "Rate of gas absorption during atelectasis". The American Periodical of Physiology. 170 (3): 606–thirteen. doi:10.1152/ajplegacy.1952.170.three.606. PMID 12985936.
  39. ^ O'Brien, Jennifer (June 2013). "Absorption atelectasis: incidence and clinical implications". AANA Journal. 81 (iii): 205–208. ISSN 0094-6354. PMID 23923671.
  40. ^ Kallet RH, Matthay MA (January 2013). "Hyperoxic acute lung injury". Respiratory Care. 58 (one): 123–41. doi:10.4187/respcare.01963. PMC3915523. PMID 23271823.
  41. ^ Mach WJ, Thimmesch AR, Pierce JT, Pierce JD (2011). "Consequences of hyperoxia and the toxicity of oxygen in the lung". Nursing Research and Practice. 2011: 260482. doi:10.1155/2011/260482. PMC3169834. PMID 21994818.
  42. ^ Cooper, Jeffrey S.; Phuyal, Prabin; Shah, Neal (2021), "Oxygen Toxicity", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 28613494, retrieved 2021-11-12
  43. ^ Cipolla MJ (2009). Control of Cerebral Blood Flow. Morgan & Claypool Life Sciences.
  44. ^ Sheng M, Liu P, Mao D, Ge Y, Lu H (2017-05-02). "The impact of hyperoxia on encephalon activity: A resting-state and task-evoked electroencephalography (EEG) written report". PLOS Ane. 12 (five): e0176610. Bibcode:2017PLoSO..1276610S. doi:ten.1371/periodical.pone.0176610. PMC5412995. PMID 28464001.
  45. ^ Seo HJ, Bahk WM, Jun TY, Chae JH (2007-02-01). "The Upshot of Oxygen Inhalation on Cognitive Function and EEG in Good for you Adults". Clinical Psychopharmacology and Neuroscience. five (ane): 25–30. ISSN 1738-1088.
  46. ^ a b c Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN (July 2018). "Highs and lows of hyperoxia: physiological, performance, and clinical aspects". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 315 (1): R1–R27. doi:10.1152/ajpregu.00165.2017. PMID 29488785. S2CID 3634189.
  47. ^ Tibbles PM, Edelsberg JS (June 1996). "Hyperbaric-oxygen therapy". The New England Journal of Medicine. 334 (25): 1642–eight. doi:10.1056/NEJM199606203342506. PMID 8628361.
  48. ^ Christiansen J, Douglas CG, Haldane JS (July 1914). "The absorption and dissociation of carbon dioxide by human blood". The Journal of Physiology. 48 (4): 244–71. doi:10.1113/jphysiol.1914.sp001659. PMC1420520. PMID 16993252.
  49. ^ Hanson CW, Marshall Exist, Frasch HF, Marshall C (January 1996). "Causes of hypercarbia with oxygen therapy in patients with chronic obstructive pulmonary affliction". Disquisitional Care Medicine. 24 (1): 23–8. doi:10.1097/00003246-199601000-00007. PMID 8565533.
  50. ^ Waisman D, Brod Five, Wolff R, Sabo Due east, Chernin M, Weintraub Z, et al. (August 2003). "Furnishings of hyperoxia on local and remote microcirculatory inflammatory response after splanchnic ischemia and reperfusion". American Journal of Physiology. Heart and Circulatory Physiology. 285 (2): H643-52. doi:ten.1152/ajpheart.00900.2002. PMID 12714329.
  51. ^ Riseman JA, Zamboni WA, Curtis A, Graham DR, Konrad Hour, Ross DS (November 1990). "Hyperbaric oxygen therapy for necrotizing fasciitis reduces mortality and the need for debridements". Surgery. 108 (5): 847–50. PMID 2237764.
  52. ^ Heffner JE, Repine JE (August 1989). "Pulmonary strategies of antioxidant defense". The American Review of Respiratory Illness. 140 (two): 531–54. doi:10.1164/ajrccm/140.2.531. PMID 2669581.
  53. ^ Clark JM, Lambertsen CJ (May 1971). "Rate of development of pulmonary O2 toxicity in human during O2 breathing at 2.0 Ata". Journal of Applied Physiology. 30 (5): 739–52. doi:10.1152/jappl.1971.30.5.739. PMID 4929472.
  54. ^ a b Kokot M, Kokot F, Franek Due east, Wiecek A, Nowicki Thou, Duława J (October 1994). "Effect of isobaric hyperoxemia on erythropoietin secretion in hypertensive patients". Hypertension. 24 (iv): 486–90. doi:x.1161/01.HYP.24.4.486. PMID 8088916.
  55. ^ Sylvester JT, Shimoda LA, Aaronson PI, Ward JP (January 2012). "Hypoxic pulmonary vasoconstriction". Physiological Reviews. 92 (1): 367–520. doi:ten.1152/physrev.00041.2010. PMID 22298659.
  56. ^ a b Groves BM, Reeves JT, Sutton JR, Wagner PD, Cymerman A, Malconian MK, et al. (Baronial 1987). "Performance Everest 2: elevated high-altitude pulmonary resistance unresponsive to oxygen". Periodical of Applied Physiology. 63 (2): 521–30. doi:10.1152/jappl.1987.63.2.521. PMID 3654410.
  57. ^ a b Day RW (2015). "Comparison between the Astute Pulmonary Vascular Effects of Oxygen with Nitric Oxide and Sildenafil". Frontiers in Pediatrics. 3: xvi. doi:ten.3389/fped.2015.00016. PMC4347295. PMID 25785258.
  58. ^ Mathieu, Daniel; Favory, Raphael; Collet, François; Linke, Jean-Christophe; Wattel, Francis (2006). "Physiologic Effects of Hyperbaric Oxygen on Hemodynamics and Microcirculation". Handbook on Hyperbaric Medicine. pp. 75–101. doi:10.1007/1-4020-4448-8_6. ISBN1-4020-4376-7.
  59. ^ McNulty PH, King North, Scott S, Hartman G, McCann J, Kozak M, et al. (March 2005). "Effects of supplemental oxygen administration on coronary blood flow in patients undergoing cardiac catheterization". American Periodical of Physiology. Heart and Circulatory Physiology. 288 (3): H1057-62. doi:10.1152/ajpheart.00625.2004. PMID 15706043.
  60. ^ Sands G. "Oxygen Therapy for Headaches". Archived from the original on 2007-12-01. Retrieved 2007-11-26 .
  61. ^ Jain, 1000. Thousand. (2017). "Physical, Physiological, and Biochemical Aspects of Hyperbaric Oxygenation". Textbook of Hyperbaric Medicine. pp. 11–22. doi:x.1007/978-3-319-47140-2_2. ISBN978-3-319-47138-nine.
  62. ^ "Luxfer Aluminum Oxygen Cylinders". CPR Savers & First Aid Supply. Archived from the original on 2010-04-xviii. Retrieved 2010-04-18 .
  63. ^ McCoy R. "Portable Oxygen Concentrators (POC) Performance Variables that Affect Therapy" (PDF). Archived from the original (PDF) on 2007-07-09. Retrieved 2007-07-03 .
  64. ^ Evaluation of the System O2 Inc. Portable Nonpressurized Oxygen Delivery System [ permanent dead link ]
  65. ^ a b c Werley BL, ed. (1991). "Fire Hazards in Oxygen Systems". ASTM Technical Professional training. Philadelphia: ASTM International Subcommittee G-4.05.
  66. ^ Lindford AJ, Tehrani H, Sassoon EM, O'Neill TJ (June 2006). "Home oxygen therapy and cigarette smoking: a dangerous practise". Annals of Burns and Fire Disasters. 19 (two): 99–100. PMC3188038. PMID 21991033.
  67. ^ Kallstrom 2002
  68. ^ a b c d Hardavella, Georgia; Karampinis, Ioannis; Frille, Armin; Sreter, Katherina; Rousalova, Ilona (September 2019). "Oxygen devices and delivery systems". Breathe. 15 (3): e108–e116. doi:10.1183/20734735.0204-2019. ISSN 1810-6838. PMC6876135. PMID 31777573.
  69. ^ a b Gloeckl, Rainer; Osadnik, Christian; Bies, Lisa; Leitl, Daniela; Koczulla, Andreas-Rembert; Kenn, Klaus (2019). "Comparison of continuous flow versus demand oxygen delivery systems in patients with COPD: A systematic review and meta-assay". Respirology. 24 (iv): 329–337. doi:10.1111/resp.13457. ISSN 1440-1843. PMID 30556614. S2CID 58768054.
  70. ^ Elation, Peter L.; McCoy, Robert W.; Adams, Alexander B. (February 2004). "Characteristics of demand oxygen commitment systems: maximum output and setting recommendations". Respiratory Care. 49 (ii): 160–165. ISSN 0020-1324. PMID 14744265.
  71. ^ Garcia JA, Gardner D, Vines D, Shelledy D, Wettstein R, Peters J (October 2005). "The Oxygen Concentrations Delivered by Different Oxygen Therapy Systems". Chest. 128 (iv): 389S–390S. doi:10.1378/chest.128.4_meetingabstracts.389s-b.
  72. ^ Earl, John. Commitment of High FiO
    2
    . Cardinal Health Respiratory Abstracts.
  73. ^ Authentic Oxygen Delivery Archived 2013-04-03 at the Wayback Car
  74. ^ Sim MA, Dean P, Kinsella J, Black R, Carter R, Hughes M (September 2008). "Performance of oxygen delivery devices when the breathing pattern of respiratory failure is simulated". Anaesthesia. 63 (9): 938–40. doi:x.1111/j.1365-2044.2008.05536.x. PMID 18540928. S2CID 205248111.
  75. ^ Roca O, Riera J, Torres F, Masclans JR (April 2010). "High-menstruum oxygen therapy in acute respiratory failure". Respiratory Intendance. 55 (4): 408–13. PMID 20406507. Archived from the original on 2013-05-eleven.
  76. ^ Cyanide poisoning – New recommendations on beginning assistance treatment Archived 2009-x-20 at the Wayback Car
  77. ^ Hui DS, Hall SD, Chan MT, Chow BK, Ng SS, Gin T, Sung JJ (Baronial 2007). "Exhaled air dispersion during oxygen delivery via a simple oxygen mask". Chest. 132 (2): 540–6. doi:10.1378/chest.07-0636. PMC7094533. PMID 17573505.
  78. ^ Mardimae A, Slessarev K, Han J, Sasano H, Sasano Due north, Azami T, et al. (Oct 2006). "Modified N95 mask delivers high inspired oxygen concentrations while effectively filtering aerosolized microparticles". Annals of Emergency Medicine. 48 (4): 391–9, 399.e1-two. doi:10.1016/j.annemergmed.2006.06.039. PMC7118976. PMID 16997675.
  79. ^ Somogyi R, Vesely AE, Azami T, Preiss D, Fisher J, Correia J, Fowler RA (March 2004). "Dispersal of respiratory droplets with open vs closed oxygen delivery masks: implications for the transmission of astringent acute respiratory syndrome". Chest. 125 (3): 1155–7. doi:10.1378/breast.125.3.1155. PMC7094599. PMID 15006983.
  80. ^ "FAA Approved Portable Oxygen Concentrators – Positive Testing Results". faa.gov. Archived from the original on 2014-07-02. Retrieved 2014-06-22 . (Every bit of November 2014[update]) Positive Testing Results: AirSep FreeStyle, AirSep LifeStyle, AirSep Focus, AirSep Freestyle 5, (Caire) SeQual eQuinox / Oxywell (model 4000), Delphi RS-00400 / Oxus RS-00400, DeVilbiss Healthcare iGo, Inogen One, Inogen I G2, lnogen 1 G3, lnova Labs LifeChoice Activox, International Biophysics LifeChoice / lnova Labs LifeChoice, Invacare XPO2, Invacare Solo ii, Oxylife Independence Oxygen Concentrator, Precision Medical EasyPulse, Respironics EverGo, Respironics SimplyGo, Sequal Eclipse, SeQual SAROS, VBox Trooper

Farther reading [edit]

  • Kallstrom TJ (June 2002). "AARC Clinical Practise Guideline: oxygen therapy for adults in the acute care facility--2002 revision & update". Respiratory Intendance. 47 (six): 717–xx. PMID 12078655.
  • Cahill Lambert AE (November 2005). "Adult domiciliary oxygen therapy: a patient'southward perspective". The Medical Journal of Australia. 183 (ix): 472–3. doi:ten.5694/j.1326-5377.2005.tb07125.x. PMID 16274348.

What Is Chemical Makeup Of Nutrio2?,

Source: https://en.wikipedia.org/wiki/Oxygen_therapy

Posted by: govanloded1954.blogspot.com

0 Response to "What Is Chemical Makeup Of Nutrio2?"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel